INTRODUCTION

• About ‘SIDS In Numbers 2017’
• What are SIDS?
• Climate Change in SIDS

ECONOMIC

• Economic Losses
• Cost of Inaction
• Climate Finance
• Impact of Climate Change on Economic Sectors
 – Fisheries & Marine Resources
 – Tourism

PG. 4
PG. 8
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>03</th>
<th>04</th>
<th>05</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVIRONMENT</td>
<td>SOCIAL</td>
<td>KEY POINTS</td>
</tr>
<tr>
<td>• SIDS on the Frontline of a Changing Climate</td>
<td>• Public Health</td>
<td>• References</td>
</tr>
<tr>
<td>• Sea-Level Rise: Implications for SIDS</td>
<td>• Migration and Displacement</td>
<td>• Acknowledgements</td>
</tr>
<tr>
<td>• Extreme Weather Events</td>
<td>• Natural World Heritage Listed Sites</td>
<td></td>
</tr>
<tr>
<td>• Natural Resources</td>
<td>• Food Security</td>
<td></td>
</tr>
<tr>
<td>– Coral Reefs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Freshwater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Biodiversity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| PG. 18 | PG. 31 | PG. 38 |
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAL</td>
<td>Average Annual Loss</td>
</tr>
<tr>
<td>AIMS</td>
<td>Atlantic, Indian Ocean, Mediterranean and South China Sea</td>
</tr>
<tr>
<td>AOSIS</td>
<td>Alliance of Small Island States</td>
</tr>
<tr>
<td>AR5</td>
<td>Fifth Assessment Report by IPCC</td>
</tr>
<tr>
<td>BPOA</td>
<td>Barbados Programme of Action</td>
</tr>
<tr>
<td>COP</td>
<td>Conference of the Parties</td>
</tr>
<tr>
<td>DRR</td>
<td>Disaster Risk Reduction</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Ñino Southern Oscillation</td>
</tr>
<tr>
<td>EVI</td>
<td>Environmental Vulnerability Index</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas(es)</td>
</tr>
<tr>
<td>IPC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LDCs</td>
<td>Least Developed Countries</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>PIPA</td>
<td>Phoenix Island Protected Area</td>
</tr>
<tr>
<td>RCP</td>
<td>Representative Concentration Pathways</td>
</tr>
<tr>
<td>SAMOA Pathway</td>
<td>SIDS Accelerated Modalities of Action Pathway</td>
</tr>
<tr>
<td>SIDS</td>
<td>Small Island Developing States</td>
</tr>
<tr>
<td>SPREP</td>
<td>Secretariat of the Pacific Regional Environment Programme</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UN-DESA</td>
<td>United Nations Department of Economic and Social Affairs</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>UNISDR</td>
<td>United Nations Office for Disaster Risk Reduction</td>
</tr>
<tr>
<td>UN-OHRLLS</td>
<td>United Nations Office of the High Representative for Least Developed Countries, Least Developed Countries and Small Island Developing States</td>
</tr>
<tr>
<td>UNU-EHS</td>
<td>United Nations University – Institute for Environment and Human Security</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
</tbody>
</table>
UN-OHRLLS MANDATE

The UN Office of the High Representative for the Least Developed Countries, Landlocked Developing Countries and Small Island Developing States (UN-OHRLLS) was established by the United Nations General Assembly in 2001 through its resolution 56/227 with functions recommended by the Secretary-General in paragraph 17 of his report A/56/645.

The UN-OHRLLS mandate from the General Assembly calls upon the Office to engage in advocacy and mobilization of international support and resources for the implementation of the Programme of Action for Small Island Developing States (SIDS), known also as the Barbados Programme of Action (BPOA). The latter outcome is known as the Mauritius Strategy for Implementation of the Programme of Action for the Sustainable Development of Small Island Developing States (MSI).

With the successful conclusion of the Third International Conference on SIDS in 2014, the office’s mandate was further amplified to ensure the mainstreaming of the Samoa Pathway and issues related to SIDS in the work of the United Nations system and to enhance the coherence of the issues of those States in United Nations processes, including at the national, regional and global levels.
1. About ‘SIDS In Numbers 2017 – Climate Change’

The Paris Climate Agreement is the first-ever universal, legally binding document on climate change which was adopted by 195 countries at the Paris climate conference (COP21) in December 2015. It has set precedence for greater collaboration in the global efforts to combating climate change and adapt to its impact, thereby rekindling hopes for safer climate regimes. During the COP21 negotiations on the Paris Climate Agreement, SIDS continued to highlight the special circumstances and particular vulnerability they face with the onset of climate change and stated that they wanted the agreement to recognize their special circumstances. As of 8 May 2017, 32 out of the 38 SIDS are State Parties to the Paris Agreement. While this renewed commitment from Members States is welcome, SIDS continue experiencing the consequences of climate change often with adverse effects such as rises in temperature and sea level.

SIDS In Numbers – Updated Climate Change Edition 2017 provides, at a glance, a snapshot of select key SIDS indicators under the three dimensions of sustainable development: Environment, Social, and Economic, to highlight the impacts of climate change on SIDS.

The presentation of the data and statistics contained in this publication should not be taken as authoritative. They are being presented in a manner that attempts to illustrate and advocate for the special case of SIDS in the context of climate change. Data was obtained from a variety of sources, including the IPCC’s AR5 on Climate Change published in 2013, The World Bank’s Report “Turn Down The Heat,” recent publications by various UN agencies including UNEP, UNISDR, UNDESA and from the broader scientific community.

The data used in this publication is exclusively obtained from publicly available sources. While extensive literature on climate change and related issues exist on a global scale, SIDS regions and individual countries in general remain under-researched. As a consequence, specific data on climate change impacts in SIDS is often sparsely available.
2. What are SIDS?

SIDS are a distinct group of 38 UN Member States and 20 Non-UN Members/Associate Members of regional commissions facing unique social, economic and environmental vulnerabilities. The three geographical regions in which SIDS are located are the: Caribbean, Pacific, and the Atlantic, Indian Ocean and South China Sea (AIMS).

SIDS were recognized as a special case both for their environment and development at the 1992 United Nations Conference on Environment and Development held in Rio de Janeiro, Brazil. This recognition was made specifically in the context of Agenda 21 (Chapter 17 G). In 1994, the Barbados Programme of Action (BPOA) prescribed specific actions enabling SIDS to achieve sustainable development and in 2005, the Mauritius Strategy for further Implementation of the BPOA was adopted to address remaining gaps in implementation.

In 2014, the international community gathered in Samoa for the Third International Conference on Small Island Developing States to forge a new pathway for the sustainable development of this group of countries. The SAMOA Pathway, recognizes the adverse impacts of climate change and sea-level rise on SIDS’ efforts to achieve sustainable development as well as to their survival and viability, and addresses economic development, food security, DRR and ocean management, among other issues. While many SIDS have made advances in achieving sustainable development, their inherent vulnerabilities including small size, remoteness, climate change impacts, biodiversity loss and narrow resource base mean that progress for many continues to be hampered, and their special case status remains.
3. Climate Change and SIDS

As recognized in the Barbados Programme of Action for the Sustainable Development of SIDS adopted in 1994, SIDS are particularly vulnerable to global climate change\(^1\). Their climate is influenced by large ocean-atmosphere interactions such as trade winds, El Niño, monsoons and tropical cyclones. With populations, agricultural lands and infrastructure tending to be concentrated in the coastal zone, any rise in sea-level will have significant and profound effects on settlements, living conditions and island economies\(^2\). These climate characteristics, combined with their particular socio-economic situations make SIDS, among which are 9 LDCs, some of the most vulnerable countries in the world to climate change. In addition, the fact that SIDS have a combined population of around 65 million people contributing to less than 1 percent of global GHG emissions, means that they will suffer disproportionately from the damaging impacts of climate change\(^3\) and that some may become uninhabitable.

\(^1\) Barbados Plan of Action (BPOA), 1994.
\(^2\) UNFCCC, 2007.
\(^3\) UNFCCC, 2007.
Given SIDS’ unique economic vulnerabilities such as a narrow resource base, remoteness from markets, and limited ability to benefit from economies of scale, it comes as no surprise that climate change puts additional burden on their respective economies. In particular, damages incurred due to climate-related phenomena are often enormous in comparison to their economies’ sizes and they experience great difficulties trying to raise funds for adaptation and mitigation measures. In particular, high public debt levels constrain SIDS governments in their ability to invest in public infrastructure development and climate change adaptation measures. SIDS typically need to borrow further funds to address the loss of earnings resulting from disasters, and invest in disaster relief, reconstruction and infrastructure improvements to accommodate higher sea-levels.

The economic costs of climate change for small states are projected at 15 percent of GDP or more. For Caribbean small states, a one-meter sea-level rise by 2080 is projected to result in losses and damages of about 8 percent of projected GDP (Simpson et al., 2010). For Pacific island small states, a sea level rise of between 1 and 1.7 meters is projected to result in an economic impact of between 3 and 15 percent of GDP due to lost agricultural production, tourism and fisheries and infrastructure damage (Asia Development Bank, 2013). These figures compare with projections for market and nonmarket losses and damages for the global economy ranging from 1 to 4 percent of output for a 4°C increase in global mean temperature.
1. Economic Losses & Cost of Inaction

The estimated economic stresses, globally due to climate change, project losses of USD 63 billion per year starting in 2010. This impact will rise by more than 100 percent to USD 157 billion each year by 2030. Average Annual Losses (AAL) as a percentage of GDP is much higher in SIDS compared with the global average as shown in Chart 1 below. In the climate change negotiations in Paris, SIDS called for an international mechanism on Loss and Damage which they argued must be a central and distinct element of the Paris Agreement. The resulting standalone article 8 of the Paris Agreement speaks to this call.

4 IPCC, 2014.

5 DARA and the Climate Vulnerability Forum, Fundacion DATA Internacional, 2010.
2. Cost of Inaction

SIDS may choose between several options to adapt to and combat climate change impacts. These options range from complete inaction to managed retreat to more proactive adaptation measures such as coastal engineering. In order to help decision-making, calculations are typically undertaken using a variety of different scenarios. With regard to inaction, i.e. if governments decide against any form of action to combat the impacts of climate change, the cost of inaction in the Caribbean alone is projected to amount to over US$22 billion annually by 2050 and US$46 billion by 2100 - equalling 10 percent and 22 percent of the current size of the Caribbean economy.

3. Climate Finance

Sixteen dedicated climate funds are active in the SIDS (see Chart 3). A total of USD 798 million was approved for 172 projects between 2003 and 2015. The biggest contributor of finance is the Pilot Program for Climate Resilience (PPCR), which approved USD 179 million for SIDS between 2003 and 2015. The second largest contributor is the Least Developed Countries Fund (LDCF), which approved USD 135 million. Multilateral sources provide the most funding for SIDS (USD 701 million or 88%).

6 US Center; Global Development Institute, 2008.
Climate change financing for small island developing states is also growing, but from a low base. Climate finance increased significantly after COP15, but the overall amount remains small, reaching less than US$1 billion in 2014 (see Table 1). A majority of small states financing is for climate change mitigation, falling short of adaptation needs. Although COP16 placed increased emphasis on adaptation for low-income and small developing countries, mitigation still accounts for some 58 percent of total climate change financing for small developing states. According to the most recent estimates, global adaptation costs are 2 to 3 times higher than international public finance available for this purpose and to close this gap adaptation finance would have to be between 6 to 13 times larger by 2030 (United Nations, 2016).
Asset replacement costs arise out of inaction in preparing for climate change impacts. The total value of infrastructure, buildings, and cash crops considered at some level of risk in the Pacific is estimated at over US$111 billion. In the Pacific Region, the asset replacement cost is on average 4 times greater than the GDP (in 2013), for some countries such as Timor-Leste the ratio of asset replacement cost is 14 times their GDP.

Table 1. Climate Change Financing to SIDS in 2014 (US$ millions)

Multilateral development banks	444
Bilateral officials sources	368
Climate funds	140
Total	**952**

1/ Data for the 39 members of the Alliance of Small Island States (AOSIS).
2/ IMF staff elaborations on OECD DAC and ODI-Climate Finance Update databases and AfDB, ADB, EBRD, IDB, IFC, and WB (2016a).

Chart 4. The asset replacement costs due to climate change impacts is several folds greater than the GDPs of SIDS: Pacific SIDS

7 FAO, 2014.
8 FAO, 2014.
4. Impact of Climate Change on Economic Sectors

Due to their relative remoteness and size, many SIDS have a relatively narrow resource base to drive their industrial development. A few key industries including fisheries, tourism and agriculture help in contributing a significant share to national GDP. The adverse impact of climate change make SIDS’ already open and exposed economies even more vulnerable.

Fisheries & Marine Resources

Many SIDS are in fact large ocean States. Their vast ocean spaces comprise a significant portion of the world’s ocean – on average 28 times more than their actual land space. For example, the Republic of Kiribati has the 13th largest exclusive economic zone on Earth. Typically, oceans, more specifically the oceanic and coastal fishing industry, represent an important source of nutrition and revenue for SIDS populations.
In the Pacific SIDS, the fishing industry contributes up to 10 percent of total GDP. Of the total 2.4 million tonnes of tuna caught in the Western Pacific Ocean, 58 percent had been caught in the waters of Pacific SIDS, generating a total of USD 2.8 billion.
in revenues. In the CARICOM countries alone, more than 64,000 people are directly employed in small-scale fisheries and aquaculture, with another approximately 200,000 people working indirectly in fishing related activities including: processing, retail, boat construction and net repair. The main fish producing countries in the Caribbean were Guyana (31 percent of total production), Suriname (21 percent), the Bahamas (11 percent) and Trinidad and Tobago (7 percent).

The impact of climate change could fundamentally alter the fishing industry in SIDS. Marine species are gradually moving away from the equator into cooler waters, and, as a result, species from warmer waters are replacing those traditionally caught in many fisheries worldwide. These shifts could have negative effects including loss of traditional fisheries, decreased in profits and jobs, conflicts over new fisheries that emerge because of distribution shifts, food security concerns and a large decrease in catch in the tropics.

Figure 2. Tourism-dependent Islands – share of tourism in GDP

Source: GRID-Arendal, 2013.

10 IPCC, 2014.
Tourism

The social, economic and environmental well-being of many SIDS is tied to the tourism sector. Revenues generated by the tourism sector and tourism related activities represent an important source of income for many SIDS. The Caribbean SIDS in particular base most of their livelihoods on revenues from tourism. Annually, about 12 percent of the total labour force, i.e. approximately 2 million people, are estimated to work in the Caribbean tourist sector, generating around 47 billion USD of revenue in 2012, i.e. 14 percent of GDP and 25 billion USD of exports, 15 percent of total exports.

Research on sea-level rise has shown that as much as 29 percent of major resort properties in the CARICOM countries would be partially or fully inundated by a one-meter sea-level rise. Furthermore, about 49 percent are estimated to be damaged or destroyed by combined sea-level rise and storm surge and sea-level rise-enhanced erosion given their lack extensive coastal protection in order to preserve aesthetics of natural beach areas and views to the sea. Across the Caribbean, Moore et al. (2010) estimate that by 2050 visitor expenditures could decline from US$ 25 to US$ 15 billion as a direct result from the consequences of climate change on the area.

Chart 6. The economic impact of climate change on the tourism sector will be significant: Caribbean region (in USD millions)

Maldives, New Zealand MFAT.
1. SIDS on the Frontline of a Changing Climate

According to the IPCC, CO2 concentrations in the atmosphere have reached ‘unprecedented’ level not seen for the last 800,000 years. As greenhouse gas emissions continue to rise, an average global temperature increase of 2.6 – 4.8°C by 2100 is expected - as per the highest emissions scenario. SIDS as a group of countries contribute less than 1 per cent to total greenhouse gas emissions but have been and will continue to be among the earliest and most impacted countries. SIDS may experience both rapid-onset and temporary events, such as storms and flooding, and slow-onset processes including land erosion and changes in the global water cycle. More specifically this includes: marine inundation of low-lying areas, coral bleaching, saline intrusion into terrestrial systems, degrading ecosystems, species shifts in terrestrial systems, habitat loss, climate-induced diseases as well as casualties and damage from extreme events. For the regions where SIDS are located, significant changes are expected in average temperature, rainfall and sea level rise as illustrated in Figure 3.
Figure 3. Climate Change Projections for the IPCC Intermediate Low-Emissions scenario (RCP4.5)

Source: Based on data from IPCC AR5 - RCP4.5 low emissions scenario.

14 UNEP, 2014.

15 CDKN, 2014.
2. Sea-Level Rise: Implications for SIDS

The most obvious distributional effects of climate change relate to the rise in sea level (Group of Experts of the Regular Process, 2016). Sea level rise coupled with extreme weather events induced by climate change poses one of the most immediate threats to SIDS. In particular, the majority of communities, infrastructure and economic activities are located in low-lying coastal areas. For low-lying atoll nations with a majority of land area within 5m above sea level (refer to Table 2) and those with a majority of population living within 5m above sea level (refer to Table 3), the dangers and challenges of rising seas are significant. According to UNEP (2008), approximately 70 percent of the Caribbean population lives in coastal areas. In the tropical Western Pacific where a large number of SIDS communities exist, rates of sea level rise of up to four times the global average (approximately 12 mm per year) have been reported between 1993 and 200916. In addition, as populations grow, and coupled with climate change impacts, relocation to higher ground or beyond national borders will be a major challenge. Owing to higher projections of sea level rise in AR5, it is clear that many – particularly low lying atoll nations – face an existential threat.

A case in point is Tuvalu where removing all the factors which affect short-term sea level fluctuation (including relative sea level rise of 10 percent due to subsidence and effects of ENSO), the long-term sea level around Tuvalu rose at the rate of 5.1 (±0.7) mm per year from 1950-200917. This is almost 3 times greater than the global average sea level over that time of 1.8 mm per year.

16 IPCC, 2014.
17 Becker et al., 2011.
Table 2. Highest and lowest share of land area within 5m above sea level

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>% OF LAND AREA WITHIN 5M ABOVE SEA LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maldives, Tuvalu</td>
<td>100%</td>
</tr>
<tr>
<td>Marshall Islands</td>
<td>99%</td>
</tr>
<tr>
<td>Kiribati</td>
<td>96%</td>
</tr>
<tr>
<td>Cook Islands</td>
<td>88%</td>
</tr>
<tr>
<td>Average</td>
<td>26%</td>
</tr>
<tr>
<td>Haiti</td>
<td>4%</td>
</tr>
<tr>
<td>Suriname, Timor-Leste, Guyana</td>
<td>3%</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>2%</td>
</tr>
</tbody>
</table>

Source: UN-OHRLLS, Small Island Developing States in Numbers, 2013.

Table 3. Highest and lowest share of population living within 5 m above sea level

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>% OF POPULATION LIVING WITHIN 5M ABOVE SEA LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maldives, Tuvalu</td>
<td>100%</td>
</tr>
<tr>
<td>Marshall Islands</td>
<td>99%</td>
</tr>
<tr>
<td>Kiribati</td>
<td>95%</td>
</tr>
<tr>
<td>Suriname</td>
<td>68%</td>
</tr>
<tr>
<td>Average</td>
<td>29%</td>
</tr>
<tr>
<td>Mauritius</td>
<td>6%</td>
</tr>
<tr>
<td>Haiti</td>
<td>5%</td>
</tr>
<tr>
<td>Timor-Leste</td>
<td>4%</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>3%</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>2%</td>
</tr>
</tbody>
</table>

Source: UN-OHRLLS, Small Island Developing States in Numbers, 2013.
3. Extreme Weather Events

About 90 percent of SIDS are located in the tropics – areas naturally prone to suffer more frequently from severe weather events ranging from rapid-onset and temporary events, such as storms and flooding, slow-onset processes including land erosion and changes in the global water cycle. What is more, as SIDS populations grow and move into more at-risk areas in search of livelihoods, the number of people exposed to risk stemming from severe weather events also increases.

18 UNEP, 2014.
19 Internal Displacement Monitoring Center, Norwegian refugee Council, 2015.
According to UNISDR in the case of a one-in-250 year cyclone, six of the ten countries most at risk are SIDS20. Due to high coastal exposure, storm surge further exacerbates tropical cyclone AAL in SIDS. As illustrated in Figure 4, Cayman Islands and Antigua and Barbuda have the highest relative AAL in relation to cyclone wind while the highest relative risk with respect to storm surge is found in the Bahamas, Montserrat and Dominica.

\textbf{Figure 4. Top 15 SIDS: Tropical cyclone AAL (storm surge and cyclone wind) in relation to capital stock}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{Top 15 SIDS: Tropical cyclone AAL (storm surge and cyclone wind) in relation to capital stock}
\end{figure}

\textit{Source: UNISDR, 2015.}

20 UNISDR, 2015.
It is clear that climate change will exacerbate the impacts of tropical cyclone winds on SIDS. For the Caribbean basin as a whole, climate change contributes an additional US$1.4 billion to expected average annual losses associated with wind damage alone as illustrated in Figure 5.

Source: UNISDR, 2015.
4. Natural Resources

Coral Reefs

Coral reefs play an important role in the wellbeing of many island communities. Healthy reefs are highly efficient in breaking waves, storing carbon and supporting biodiversity. Furthermore, they function as important sources of sand, slow down (beach) erosion and support a variety of tourism activities. Rising sea surface temperatures and more acidic oceans in combination with other unsustainable practices, however, can severely impact the growth and resilience of corals\(^{21}\) exposing them, amongst others, to thermal stress. Figure 6 illustrates the extent of coral bleaching projected in the 2030s and 2050s with a significant amount of bleaching expected to occur in SIDS regions.

Across the SIDS regions, the abundance of coral species is rapid, particularly across the Pacific as well as the Caribbean where it has decreased by over 80 percent. Coral reefs are likely to be affected due to combined impact of bleaching caused by stress from both increased water temperature and acidification. The IPCC estimates that one third of global coral reefs will experience degradation over the coming decades – even under a low-emissions scenario\(^ {22}\). In the World Resources Institute’s *Reefs at Risk Revisited* report, Haiti, Grenada, Comoros, Vanuatu, Kiribati and Fiji were identified as the SIDS most vulnerable to the effects of coral reef degradation\(^ {23}\). AR5 reported that the annual damage of coral reef loss caused by ocean acidification has been calculated at between

\(^{21}\) SREP, 2013.
\(^{22}\) IPCC, 2014.
\(^{23}\) World Resource Institute, 2011.
\(^{24}\) IPCC, 2014.
Figure 6. Projected: coral reef bleaching events in the 2030s and 2050s

US$528 and US$870 billion (depending on scenario) and can represent large portions of GDP for SIDS that are impacted\(^{24}\).

According to UNEP (2007), almost 50 percent of reefs in the Pacific region are currently considered threatened, with about 20% rated as highly or very highly threatened, including, for example, in the Federated States of Micronesia and the Republic of the Marshall Islands.

Fresh Water

Having access to a reliable, safe, sustainable and affordable supply of drinking water remains a critical issue for the majority of SIDS\(^{25}\). SIDS are directly affected by limited freshwater resources likely compromised by human-induced and natural stressors such as rising sea level and climate variability. Typical sources of potable water for SIDS communities include groundwater, surface water and desalinated water which are commonly recharged during the wetter season of the year. Many countries rely entirely

\(^{24}\) UNEP, 2012.

\(^{25}\) UNEP, 2012.

\(^{26}\) UNFCCC, 2005.
on a single source of water supply26.

Contamination leading to water quality degradation, over-extraction and shortcomings in national water management, however, threaten the efficient operation and maintenance of freshwater sources. With many SIDS facing water stress and scarcity (refer to Figure 6), the impacts of climate change, such as extreme tides, sea-level rise and saline intrusion into coastal aquifers adds further pressure on SIDS. In addition, communities that depend primarily on rainwater harvesting will be particularly vulnerable to changes in precipitation patterns and prolonged drought conditions.

Varying degrees of water insecurity resulting from these challenges are already being experienced by many SIDS. For example, Mauritius is projected to become a “water-stressed” country, and Comoros a “water-scarce” country by the year 202527. Further, as many SIDS economies are heavily dependent on agriculture or tourism activities, both major consumers of freshwater, economic losses are likely to result when operations have to be discontinued. What makes the matter of water security particularly challenging in a SIDS context, is the immediacy of water-related problems, and many SIDS’ limited capacity to respond28. In the World Resources Institute’s

27 UNEP, 2012.
28 UNEP, 2012.
Aqueduct Country and River Basin Ranking, ranking the Baseline Water Stress (i.e. the ratio of total annual water withdrawals to total available annual renewable supply) by country and for agricultural, municipal, and industrial sectors, 9 out of the 16 countries tied for highest possible score - meaning extremely high water stress - are SIDS. In the Caribbean, Antigua and Barbuda, Barbados, Dominica, Jamaica, St. Lucia, St. Vincent and the Grenadines and and Trinidad and Tobago. In the AIMS SIDS, these are Bahrain, Comoros and Singapore.

Biodiversity

While many SIDS are home to large numbers of endemic flora and fauna, it is also amongst SIDS that alarming rates of biodiversity loss are taking place. According to SPREP, there is a high degree of confidence that projected changes in climate will result in the degradation, redistribution, and/or fragmentation of ecosystems and the loss of biodiversity, species, and ecosystem services in the Pacific over the coming decades.
Source: Based on data from the Secretariat of the Convention on Biological Diversity and Conservation International.
For SIDS, the impacts of climate change pose distinctive challenges to their social sector including on their public health, food security, migration, cultural and natural heritage and their ongoing efforts to attain their sustainable development aspirations. These challenges stem from SIDS’ inherent characteristics of high dependency on natural resources and ecosystem services, small markets, isolated geographic locations and large coastal populations, most of which are located in low-lying communities.

1. Public Health

Climate change will have the greatest effect on health in societies with scarce resources, little technology and frail infrastructure\(^{29}\) in low- and middle-income countries and populations including sub-Saharan Africa, South Asia and SIDS\(^{30}\). Higher temperatures, changes in precipitation and an increase in the frequency and intensity of extreme weather events will increase the risk of food – and water borne diseases; vector-borne diseases; undernutrition resulting from diminished food production; lost work capacity and reduced labour productivity\(^{31}\).

The IPCC’s projections and qualitative assessments of the future burden (for the period 2030–2040) of ill-health due to current climate change, in which the world will inevitably experience approximately \(1.5^\circ C\) of warming due to past and present greenhouse gas emissions, already paints an alarming picture. The IPCC’s projections for the period 2080–2100, for which the global mean temperature is expected to increase by approximately \(4^\circ C\) above preindustrial levels, however, depicts a scenario of increased health risk concerns including those on air quality and prevalence of food and water borne diseases\(^{32}\). SIDS will undoubtedly be affected with the rest of the world.

\(^{29}\) GWHO, 2009.

\(^{30}\) WHO, 2014.

\(^{31}\) OWHO, 2015.

\(^{32}\) WHO, 2015.
Figure 8. Summary of the main expected health impacts of climate variability and climate change globally by the middle of the current century

<table>
<thead>
<tr>
<th>Climate change effects</th>
<th>Health risks</th>
<th>Health impacts</th>
<th>Confidence rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased number of warm days and nights; increased frequency and intensity of heat waves; increased fire risk in low rainfall conditions</td>
<td>Excess heat-related mortality; increased incidence of heat exhaustion and heat stroke, particularly for outdoor labourers, athletes, the elderly, exacerbated circulatory, cardiovascular, respiratory and kidney diseases; increased premature mortality related to ozone and air pollution produced by fires, particularly during heat waves</td>
<td>Increased risk of injury, disease and death due to more intense heat waves and fires</td>
<td>Very high</td>
</tr>
<tr>
<td>Decreased number of cold days and nights</td>
<td>Lower cold-related mortality and reduced cardiovascular and respiratory diseases particularly for the elderly in cold and temperate climates</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Effects mediated through natural systems</td>
<td>Accelerated microbial growth, survival, persistence, transmission, virulence of pathogens; shifting geographic and seasonal distribution of diseases (e.g. cholera, schistosomiasis) and ecological changes (e.g. harmful algal blooms); lack of water leading to poor hygiene; flood damage to water and sanitation infrastructures; contamination of water sources through overflow</td>
<td>Increased risks of food- and water-borne diseases</td>
<td>Very high</td>
</tr>
<tr>
<td>Higher temperatures and humidity; changing and increasingly variable precipitation; higher sea surface and freshwater temperatures</td>
<td>Accelerated parasite replication and increased biting rates; prolonged transmission seasons; re-emergence of formerly prevalent diseases; changing distribution and abundance of disease vectors; reduced effectiveness of vector control interventions</td>
<td>Increased risks of vector-borne diseases</td>
<td>Medium</td>
</tr>
<tr>
<td>Effects heavily mediated by human systems</td>
<td>Higher temperatures and changes in precipitation</td>
<td>Lower food production in the tropics; lower access to food due to reduced supply and higher prices; combined effects of undernutrition and infectious diseases; chronic effects of stunting and wasting in children</td>
<td>Increased risk of undernutrition resulting from diminished food production in poor regions</td>
</tr>
<tr>
<td>Higher temperatures and humidity</td>
<td>Outdoor and unprotected workers obliged to work either in physiologically unsafe conditions or to lose income and livelihood opportunities</td>
<td>Consequences on workers’ health include lost work capacity and reduced labour productivity in vulnerable populations</td>
<td>Consequences on workers’ health include lost work capacity and reduced labour productivity in vulnerable populations</td>
</tr>
</tbody>
</table>

Note: The final column refers to the level of confidence in the evidence for expected health impacts, as presented in the Fifth assessment report of the IPCC (4). Other health impacts are possible (see text), but were not assigned evidence grading by the IPCC.

2. Migration and Displacement

It is clear that there is the potential for human movement as a response to climate change33. With high percentage of SIDS populations living near the coast, many of which in low-lying areas, coastal floods, storm surges and inland flooding can cause serious social migration and/or displacement challenges. High sea levels and swells have already resulted in the displacement of people in a number of SIDS including Kiribati, Solomon Islands, the Marshall Islands, and the Federated States of Micronesia34. The displacement of people is likely to increase over the 21st century as a direct result of climate change35. These induced or forced migration and resettlement could have a significant impact on the social fabric, traditional culture and way of life of many SIDS.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure9.png}
\caption{Links between loss of land, livelihood and habitat security, and migration}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{FORCED MIGRATION} & \textbf{INDUCED (VOLUNTARY MIGRATION)} \\
\hline
Lost land security & Lost livelihood security & Habitat security severely reduced & Land security partly lost & Livelihood security severely disrupted & Livelihood security significantly but not severely disrupted & Land and livelihood security disrupted periodically \\
\hline
Community relocation & Community relocation & Community relocation or individual migration & Community relocation or individual migration & Individual migration & Individual migration & Short-term migration \\
\hline
Atoll submerged and or eroded & Coastal sites submerged and/or eroded & Delta sites eroded and/or inundated (coastal and/or river bank) & Salinization & Water polluted & Crop failure & Persistent Drought & Water reduced & Crop failure & Changes in disease vectors such as malaria, dengue, ciguatera & Changes in water borne incidence & Temperature related illnesses & Severely but not completely reduced land available for settlement or livelihood & Severe reductions in & water supply & food production & Moderate reductions in: & water supply & food production & Moderately but completely reduced land available for settlement or livelihood & Increased frequency and or magnitude of climatic extremes & Atolls/coastal land temporarily inundated \\
\hline
\end{tabular}
\end{table}

\textit{Source: UN-ESCAP 201436.}

33 IPCC, 2014.
34 OCHA, 2008.
35,36 IPCC, 2014.
3. Natural World Heritage Listed Sites

Climate change will have an impact on the world’s cultural and natural heritage. If current projections hold, these impacts will become even more threatening in the near future. This will have impacts on the conservation of World Heritage natural sites, many of which may be jeopardized. Increased ocean temperature and acidification poses a threat to marine biodiversity. Many marine World Heritage sites are tropical coral reefs whose exposure to bleaching events is increasing, possibly leading to massive extinction of coral reefs\(^\text{37}\). To be included in the World Heritage List, sites must be of outstanding universal value and meet at least one out of ten selection criteria. 22 SIDS, have World Heritage Listed sites. Of the 33 listed sites in these SIDS, nine are sites that involve outstanding natural heritage found along their coasts and oceans. Some of these natural world heritage listed sites cover vast tracts of ocean space.

Kiribati’s Phoenix Island Protected Area (PIPA) is a 408,250 sq.km expanse of marine and terrestrial habitats in the Southern Pacific Ocean. The property encompasses the Phoenix Island Group, one of three island groups in Kiribati, and is the largest designated Marine Protected Area in the world. PIPA conserves one of the world’s largest intact oceanic coral archipelago ecosystems, together with 14 known underwater sea mounts (presumed to be extinct volcanoes) and other deep-sea habitats.

4. Food Security

All aspects of food security are potentially affected by climate change, including food access, utilization, and price stability38. SIDS being among the most vulnerable to the adverse impacts of climate change and are already experiencing an increase in such impacts, including persistent drought and extreme weather events, sea-level rise, coastal erosion and ocean acidification, further threatening food security39.

Climate change would exacerbate food security and nutrition in SIDS. Over the 15 years life period of the MDGS, proportion of malnourished people in SIDS fell by 26 percent. This compares with a fall in 33 percent in LDCs and 36 percent in LLDCs. Globally, the figure went down by 41 percent. While the aggregate figure for SIDS masks notable progress achieved in individual countries, as a group, SIDS are facing constraints across the four dimensions of food security – food availability, food accessibility, food utilization, stability across time.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Percentage change} & \textbf{Fall in proportion of undernourished in total population 1990-2015} \\
\hline
\textbf{World} & -41.6 & \textbf{LLDCs} & -36.1 & \textbf{LDCs} & -33.2 & \textbf{SIDS} & -26.3 \\
\hline
\end{tabular}
\caption{Progress towards the MDG target on reducing proportion of undernourished in total population}
\end{table}

38 IPCC, 2014.

39 SAMOA Pathway, Paragraph 31.
SIDS are primarily net food-importing countries and are exceptionally vulnerable to the fluctuating availability and excessive price volatility of food imports. It is therefore important to support the right of everyone to have access to safe, sufficient and nutritious food, the eradication of hunger and the provision of livelihoods while conserving, protecting and ensuring the sustainable use of land, soil, forests, water, plants and animals, biodiversity and ecosystems\footnote{SAMOA Pathway, Paragraph 59.}. Some SIDS expend up to 50 percent of total import on food, compared with the world average of 7 percent.

\begin{center}
\textbf{Chart 8. Share of food imports in total imports}
\end{center}

Source: Secretariat of the Convention of Biological Diversity and Conservation International.
Climate-related hazards affect the vulnerable and poor people’s lives directly through impacts on livelihoods, reductions in crop yields, or destruction of homes and indirectly through, for example, increased food prices. Over the period 2005 to 2013, food import bills in SIDS accounted for over a third (or 33 percent) of all exports of goods and services. A high degree of volatility is also observed across time, with the figure reaching 40-42 percent during the spikes in global food prices around 2008. To put this into context, globally ratio of food imports relative to exports has remained relatively steady at 7 percent over the same time period. Furthermore, for a handful of SIDS (Kiribati, Tuvalu and Sao Tome and Principe) food imports to exports was consistently over 100 percent in 2005 to 2013, indicating some SIDS are already suffering from unsustainably high food bills.

SIDS in general face high food import bills with some experiencing food import bills that are more than their export earnings.

Chart 9. SIDS ratio of food imports to foreign exchange
<table>
<thead>
<tr>
<th>Key Point</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The climate is already changing and SIDS area already feeling the impacts</td>
</tr>
<tr>
<td>2</td>
<td>Further climate change is inevitable in the coming decades</td>
</tr>
<tr>
<td>3</td>
<td>Climate change is affecting SIDS’ growth and development</td>
</tr>
<tr>
<td>4</td>
<td>Climate change poses an existential threat to some SIDS</td>
</tr>
<tr>
<td>5</td>
<td>Adaptation can reduce the impacts of climate change, but there are limits and risks involved</td>
</tr>
<tr>
<td>6</td>
<td>The economic cost of adaptation to climate change is high in SIDS relative to the size of their economies</td>
</tr>
<tr>
<td>7</td>
<td>SIDS stand to benefit from further integration of climate adaptation, mitigation and development approaches</td>
</tr>
<tr>
<td>8</td>
<td>Transformation to a low-carbon economy implies new patterns of investment</td>
</tr>
<tr>
<td>9</td>
<td>International cooperation is vital to avert dangerous climate change and SIDS governments can promote ambitious global action</td>
</tr>
</tbody>
</table>

Source: Adapted from: Climate and Development Knowledge Network, 2014.
REFERENCES

For a detailed list of references please visit our website at http://unohrlls.org/sids-numbers-2017/

Acknowledgments

This publication has been made possible thanks to the work of the SIDS sub-programme and Advocacy Unit at UN-OHRLLS. Valuable contributions have been provided from Malwina Buldys, Ebrima S. Dem, Roberto Falangola and Lisa Neuner.
Non-UN Members / Associate Members of the Regional Commissions

American Samoa
Anguilla
Aruba
Bermuda
British Virgin Islands
Cayman Islands
Commonwealth of Northern Marianas
Cook Islands
Curacao
French Polynesia
Guadeloupe
Guam
Martinique
Montserrat
New Caledonia
Niue
Puerto Rico
Sint Maarten
Turks and Caicos Islands
U.S. Virgin Islands

The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations.