2. **What are the challenges and barriers for enhancing the role of the private sector partnerships in promoting sustainable energy for all in LLDCs?**

Thank you Madame Chair. And good afternoon to you Ladies & Gentlemen

I had some trouble preparing for this question - which kindly enough I was given beforehand. It sort-of begs for a 3-7-or ten bullet point response, ideally already hierarchical order. Despite sitting here, I do not feel entirely competent to deliver such direct answers.

Instead I will try to give a bit more of a case like - example, of what we experience in our work.

“We” is “Kairos”, a private social business on the shores of lake Constance - on the other side of this country.

We are in the business of developing prototypes for the social challenges of our time.

(or, in order to sound a bit less megalomaniac at least some of them) We operate both in Europe, as well as in sub Saharan Africa, central, and south Asia.

Core Examples of our previous work that relate to this setting here, is a competence center for renewables, where we pioneered solar technology in Sierra Leone ten years ago.

Or our extensive experience in the field of electro-mobility here in Austria.

Having conducted the largest applied research project with e-bikes. As well as conceptualizing Austria’s first model region for electro mobility.

The project, which I assume, has led to our invitation here is a new lighting technology designed for off-grid settings.

Currently we are in the process of testing, and expanding this product in countries with large off-grid populations. LLDCs not rarely qualify for this criteria.

For a new technology, to set foot somewhere else is not always an easy task.

Particularly in the field of development cooperation, there is much experience on the challenges of transferring technologies from one place to another.

While the actual transportation is an issue which might come up later, particularly in the context of landlocked countries, its still pretty basic. You pack your tractor, generator, solar panel or whatever, and fly or ship it somewhere else. Assuming that, because it worked in one place it will also work another.

The examples of such stranded machinery, and white elephants are manifold.

However there are also these other examples of technologies that travel well. The most prominent example is the almost ridiculously successful rise of the mobile Phone, which today can be found even in the most remote places. (If I’m not mistaken - almost 70% of Africans have a mobile phone today.)

Besides these glamorous high tech examples of our time there are also the more mundane. Simpler technologies, such as razor-blades or Maggi cubes found all around the
world, are in my view just as fascinating. To understand these phenomena, we need to analyze the interdependent relationship between society and technology. In such an interpretation we give significant importance to the technology itself. i.e. judging whether it is “fit” to travel and function in a different socio-economic and cultural environment.

Off-grid settings in developing countries are often characterized by various forms of scarcities. Scarcity of energy, of capacitates, of tools, of money, etc. While there is no doubt that such scarcity presents a serious limit, it also fosters a culture of creative solutions and repairs. The way mobile phones are charged are often repaired on small streets stalls, vividly presents a what I like to call a hybrid reality. Where the new intermingles with the traditional, the global with the local. It is in such interactions between society and technology, that we see great potential for innovative solutions generally but also for sustainable energy in particular.

In our understanding, sustainable energy for all, will - at least for the medium term future - only achieved by small scale and micro solar systems, installed by local people for local people. To high are the costs for large-scale infrastructure and Too outdated is our fixation on the “socket” and the 110 or 220V standard. (See mobile phone)

SO: The point from our view, is to make high quality and lasting components for sustainable energy solutions, available on local markets. They are then enhanced and put together by creative and innovative potential of technicians and end-customers in off grid regions.

It is for such a market that we have developed our modular LED light. Which basically is a highly efficient and extremely versatile light bulb. Being only semi-finished, it still needs to be modeled into a final product.

In order to be economically viable, our product is aimed at the bottom of the pyramid market. This means an emphasis on small margins, but large quantities.

A core challenge I can mention here, is the flooding of the market with low quality ready made products. These present not only a potential environmental hazard because of their short lifetime, but they are also a threat to local value creation. Simply because they are ready made.

Thank you